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Chapter 4 The Processor

PIPELINING

Introduction

Chapter 1 explains that the performance of a computer is determined by three key
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).
Chapter 2 explains that the compiler and the instruction set architecture determine
the instruction count required for a given program. However, the implementation
of the processor determines both the clock cycle time and the number of clock
cycles per instruction. In this chapter, we construct the datapath and control unit
for two different implementations of the MIPS instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section. It is followed by a section that builds up a datapath and constructs a
simple version of a processor sufficient to implement an instruction set like MIPS.
The bulk of the chapter covers a more realistic pipelined MIPS implementation,
followed by a section that develops the concepts necessary to implement more
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section and Section
4.5 present the basic concepts of pipelining. Recent trends are covered in Section
4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A8
architectures. Section 4.12 shows how to use instruction-level parallelism to more
than double the performance of the matrix multiply from Section 3.8. These sections
provide enough background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance in
more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learning
how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers with
an interest in modern hardware design, [& Section 4.13 describes how hardware
design languages and CAD tools are used to implement hardware, and then how
to use a hardware design language to describe a pipelined implementation. It also
gives several more illustrations of how pipelining hardware executes.

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

B The memory-reference instructions load word (1w) and store word (sw)
m The arithmetic-logical instructions add, sub, AND, OR, and s1t
m The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift,
multiply, and divide are missing), nor does it include any floating-point instructions.
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However, it illustrates the key principles used in creating a datapath and designing
the control. The implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and
how the choice of various implementation strategies affects the clock rate and CPI
for the computer. Many of the key design principles introduced in Chapter 1 can
be illustrated by looking at the implementation, such as Simplicity favors regularity.
In addition, most concepts used to implement the MIPS subset in this chapter are
the same basic ideas that are used to construct a broad spectrum of computers,
from high-performance servers to general-purpose microprocessors to embedded
processors.

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one register, but
most other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the operation
execution, and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction
will need to access the memory either to read data for a load or write data for a
store. An arithmetic-logical or load instruction must write the data from the ALU
or memory back into a register. Lastly, for a branch instruction, we may need to
change the next instruction address based on the comparison; otherwise, the PC
should be incremented by 4 to get the address of the next instruction.

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.
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First, in several places, Figure 4.1 shows data going to a particular unit as coming
from two different sources. For example, the value written into the PC can come
from one of two adders, the data written into the register file can come from either
the ALU or the data memory, and the second input to the ALU can come from
a register or the immediate field of the instruction. In practice, these data lines
cannot simply be wired together; we must add a logic element that chooses from
among the multiple sources and steers one of those sources to its destination. This
selection is commonly done with a device called a multiplexor, although this device
might better be called a data selector. Appendix B describes the multiplexor, which
selects from among several inputs based on the setting of its control lines. The
control lines are set based primarily on information taken from the instruction
being executed.

The second omission in Figure 4.1 is that several of the units must be controlled
depending on the type of instruction. For example, the data memory must read

Add
Data
Register #
= PC Address  Instruction |4 Registers ALU Address
Register # Data
Instruction - memo
memory Register # ry
Data

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.
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on a load and written on a store. The register file must be written only on a load
or an arithmetic-logical instruction. And, of course, the ALU must perform one
of several operations. (Appendix B describes the detailed design of the ALU.)
Like the multiplexors, control lines that are set on the basis of various fields in the

instruction direct these operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors
added, as well as control lines for the major functional units. A control unit,
which has the instruction as an input, is used to determine how to set the control
lines for the functional units and two of the multiplexors. The third multiplexor,

/_l

Add

Branch

_—

<

c

x

Data
Register #
= PC Address Instruction | Registers
Register #
Instruction
memory Register # RegWrite

ALU operation

ALU

Zero

MemWrite
Address
Data

memory

Data
MemRead

—| Control |

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or
the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to determine
whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction
(for aload or store). The added control lines are straightforward and determine the operation performed at the ALU, whether the data memory
should read or write, and whether the registers should perform a write operation. The control lines are shown in color to make them easier to

see.
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Check
Yourself

combinational
element An operational
element, such as an AND
gate or an ALU.

state element A memory
element, such as a register
or a memory.

which determines whether PC + 4 or the branch destination address is written
into the PC, is set based on the Zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the MIPS
instruction set means that a simple decoding process can be used to determine how
to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, enhance a control unit to control what actions
are taken for different instruction classes. Sections 4.3 and 4.4 describe a simple
implementation that uses a single long clock cycle for every instruction and follows
the general form of Figures 4.1 and 4.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle
must be severely stretched to accommodate the longest instruction. After designing
the control for this simple computer, we will look at pipelined implementation with
all its complexities, including exceptions.

How many of the five classic components of a computer—shown on page 243—do
Figures 4.1 and 4.2 include?

Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic
implementing the computer will operate and how the computer is clocked. This
section reviews a few key ideas in digital logic that we will use extensively in this
chapter. If you have little or no background in digital logic, you will find it helpful
to read & Appendix B before continuing.

The datapath elements in the MIPS implementation consist of two different types
of logic elements: elements that operate on data values and elements that contain
state. The elements that operate on data values are all combinational, which means
that their outputs depend only on the current inputs. Given the same input, a
combinational element always produces the same output. The ALU shown in Figure
4.1 and discussed in @] Appendix B is an example of a combinational element. Given
a set of inputs, it always produces the same output because it has no internal storage.

Other elements in the design are not combinational, but instead contain state. An
element contains state if it has some internal storage. We call these elements state
elements because, if we pulled the power plug on the computer, we could restart it
accurately by loading the state elements with the values they contained before we
pulled the plug. Furthermore, if we saved and restored the state elements, it would
be as if the computer had never lost power. Thus, these state elements completely
characterize the computer. In Figure 4.1, the instruction and data memories, as
well as the registers, are all examples of state elements.
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A state element has at least two inputs and one output. The required inputs are
the data value to be written into the element and the clock, which determines when
the data value is written. The output from a state element provides the value that
was written in an earlier clock cycle. For example, one of the logically simplest state
elements is a D-type flip-flop (see [l Appendix B), which has exactly these two
inputs (a value and a clock) and one output. In addition to flip-flops, our MIPS
implementation uses two other types of state elements: memories and registers,
both of which appear in Figure 4.1. The clock is used to determine when the state
element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in [ Appendix B.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes, because if a signal
is written at the same time it is read, the value of the read could correspond to the
old value, the newly written value, or even some mix of the two! Computer designs
cannot tolerate such unpredictability. A clocking methodology is designed to make
hardware predictable.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge, which is a quick transition from
low to high or vice versa (see Figure 4.3). Because only state elements can store a
data value, any collection of combinational logic must have its inputs come from a
set of state elements and its outputs written into a set of state elements. The inputs
are values that were written in a previous clock cycle, while the outputs are values
that can be used in a following clock cycle.

State State
element Combinational logic element
1 2

Clock cycle J

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related.
In a synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they
will not change until after the clock edge) before the active clock edge causes the state to be updated. All state
elements in this chapter, including memory, are assumed to be positive edge-triggered; that is, they change
on the rising clock edge.

clocking

methodology The
approach used to
determine when data is
valid and stable relative to
the clock.

edge-triggered
clocking A clocking
scheme in which all state
changes occur on a clock
edge.
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control signal A signal
used for multiplexor
selection or for directing
the operation of a
functional unit; contrasts
with a data signal, which
contains information
that is operated on by a
functional unit.

asserted The signal is
logically high or true.

deasserted The signal is
logically low or false.

Figure 4.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: all signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only when
the write control signal is asserted and a clock edge occurs.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deasserted
to represent logically low. We use the terms assert and deassert because when
we implement hardware, at times 1 represents logically high and at times it can
represent logically low.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we
assume that all writes take place on the rising clock edge (from low to high) or on
the falling clock edge (from high to low), since the inputs to the combinational
logic block cannot change except on the chosen clock edge. In this book we use
the rising clock edge. With an edge-triggered timing methodology, there is no
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In
Appendix B, we briefly discuss additional timing constraints (such as setup and
hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will
have inputs and outputs that are 32 bits wide, since that is the width of most of the
data handled by the processor. We will make it clear whenever a unit has an input
or output that is other than 32 bits in width. The figures will indicate buses, which
are signals wider than 1 bit, with thicker lines. At times, we will want to combine
several buses to form a wider bus; for example, we may want to obtain a 32-bit bus
by combining two 16-bit buses. In such cases, labels on the bus lines will make it

Combinational logic

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to indeterminate
data values. Of course, the clock cycle still must be long enough so that the input values are stable when
the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered
update of the state element. If feedback were possible, this design could not work properly. Our designs
in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one
shown in this figure.

State
element
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clear that we are concatenating buses to form a wider bus. Arrows are also added
to help clarify the direction of the flow of data between elements. Finally, color
indicates a control signal as opposed to a signal that carries data; this distinction
will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock

cycle, any MIPS datapath using edge-triggered writes must have more than one
copy of the register file.

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally
enough, most paths in its implementation would be 64 bits wide.

Building a Datapath

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instructions. Let’s start at the top by looking
at which datapath elements each instruction needs, and then work our way down
through the levels of abstraction. When we show the datapath elements, we will
also show their control signals. We use abstraction in this explanation, starting
from the bottom up.

Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure
4.5b also shows the program counter (PC), which as we saw in Chapter 2
is a register that holds the address of the current instruction. Lastly, we will
need an adder to increment the PC to the address of the next instruction. This
adder, which is combinational, can be built from the ALU described in detail
in @ Appendix B simply by wiring the control lines so that the control always
specifies an add operation. We will draw such an ALU with the label Add, as in
Figure 4.5, to indicate that it has been permanently made an adder and cannot
perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later. Figure
4.6 shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.20 on page 120).
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result to a register. We call these instructions either R-type
instructions or arithmetic-logical instructions (since they perform arithmetic or
logical operations). This instruction class includes add, sub, AND, OR, and s1t,

Check
Yourself

ABSTRACTION

datapath element

A unit used to operate

on or hold data within a
processor. In the MIPS
implementation, the
datapath elements include
the instruction and data
memories, the register
file, the ALU, and adders.

program counter

(PC) The register
containing the address
of the instruction in the
program being executed.
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register file A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

Instruction
address —
Instruction PC Add Sum
Instruction I
memory
a. Instruction memory b. Program counter c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.

which were introduced in Chapter 2. Recall that a typical instance of such an
instructionis add $t1,$t2, $t3, which reads $t2 and $t3 and writes $t1.

The processor’s 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be
read or written by specifying the number of the register in the file. The register file
contains the register state of the computer. In addition, we will need an ALU to
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read two
data words from the register file and write one data word into the register file for
each instruction. For each data word to be read from the registers, we need an input
to the register file that specifies the register number to be read and an output from
the register file that will carry the value that has been read from the registers. To
write a data word, we will need two inputs: one to specify the register number to be
written and one to supply the data to be written into the register. The register file
always outputs the contents of whatever register numbers are on the Read register
inputs. Writes, however, are controlled by the write control signal, which must be
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we
need a total of four inputs (three for register numbers and one for data) and two
outputs (both for data). The register number inputs are 5 bits wide to specify one
of 32 registers (32 = 2°), whereas the data input and two data output buses are each
32 bits wide.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU is
described in detail in [ Appendix B; we will review the ALU control shortly when
we need to know how to set it.
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Add —
4 —
| PC ] adress
Instruction ——
Instruction
memory

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

:5 Read ALU operation
register 1 Read
Register > |Read data 1
numbers register 2 Zero
5 |\write  Registers Data ALU ALU
-~ reglister result
Read
Write data 2
Data —
Data
RegWrite
a. Registers b. ALU

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section B.8 of i Appendix B. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available
to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5
bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be performed by the
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in
Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The
overflow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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sign-extend To increase
the size of a data item by
replicating the high-order
sign bit of the original
data item in the high-
order bits of the larger,
destination data item.

branch target

address The address
specified in a branch,
which becomes the new
program counter (PC)

if the branch is taken. In
the MIPS architecture the
branch target is given by
the sum of the offset field
of the instruction and the
address of the instruction
following the branch.

branch taken

A branch where the
branch condition is
satisfied and the program
counter (PC) becomes
the branch target. All
unconditional jumps are
taken branches.

branch not taken or
(untaken branch)

A branch where the
branch condition is false
and the program counter
(PC) becomes the address
of the instruction that
sequentially follows the
branch.

Next, consider the MIPS load word and store word instructions, which have the
general form 1w $tl,offset_value($t2)orsw $tl,offset_value
($t2). These instructions compute a memory address by adding the base register,
which is $t2, to the 16-bit signed offset field contained in the instruction. If the
instruction is a store, the value to be stored must also be read from the register file
where it resides in $t 1. If the instruction is a load, the value read from memory
must be written into the register file in the specified register, which is $t1. Thus,
we will need both the register file and the ALU from Figure 4.7.

In addition, we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, data memory
has read and write control signals, an address input, and an input for the data to be
written into memory. Figure 4.8 shows these two elements.

The beq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative
to the branch instruction address. Its form is beq $t1,$t2,0ffset. To
implement this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC. There are two details in
the definition of branch instructions (see Chapter 2) to which we must pay attention:

m The instruction set architecture specifies that the base for the branch address
calculation is the address of the instruction following the branch. Since we
compute PC + 4 (the address of the next instruction) in the instruction fetch
datapath, it is easy to use this value as the base for computing the branch
target address.

B The architecture also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of 4.

To deal with the latter complication, we will need to shift the offset field by 2.

As well as computing the branch target address, we must also determine whether
the next instruction is the instruction that follows sequentially or the instruction
at the branch target address. When the condition is true (i.e., the operands are
equal), the branch target address becomes the new PC, and we say that the branch
is taken. If the operands are not equal, the incremented PC should replace the
current PC (just as for any other normal instruction); in this case, we say that the
branch is not taken.

Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the
structure of the datapath segment that handles branches. To compute the branch
target address, the branch datapath includes a sign extension unit, from Figure 4.8
and an adder. To perform the compare, we need to use the register file shown in
Figure 4.7a to supply the two register operands (although we will not need to write
into the register file). In addition, the comparison can be done using the ALU we
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MemWrite
—| Address Read —
data
16 . 32
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Data extend
Write memory
—_—
data
MemRead
a. Data memory unit b. Sign extension unit

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of
an invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is
used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of & Appendix B for further discussion of how
real memory chips work.

designed in [ Appendix B. Since that ALU provides an output signal that indicates
whether the result was 0, we can send the two register operands to the ALU with
the control set to do a subtract. If the Zero signal out of the ALU unit is asserted,
we know that the two values are equal. Although the Zero output always signals
if the result is 0, we will be using it only to implement the equal test of branches.
Later, we will show exactly how to connect the control signals of the ALU for use
in the datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with the
lower 26 bits of the instruction shifted left by 2 bits. Simply concatenating 00 to the
jump offset accomplishes this shift, as described in Chapter 2.

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed, independent of whether
the branch condition is true or false. When the condition is false, the execution looks
like a normal branch. When the condition is true, a delayed branch first executes the
instruction immediately following the branch in sequential instruction order before
jumping to the specified branch target address. The motivation for delayed branches
arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally
ignore delayed branches in this chapter and implement a nondelayed beq instruction.

branch A type of branch
where the instruction
immediately following the
branch is always executed,
independent of whether
the branch condition is
true or false.
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PC+4 from instruction datapath —

Sum Branch
Add target
Reelldt ; ALU operation
i register

Instruction | 9 Read
Read data 1
register 2 To branch
Write Registers control logic
register Read
Write data 2
data

RegWrite
16 Sign- 32
extend

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and
a separate adder to compute the branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 00,
to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of
the “shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift will throw away
only “sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace
the PC, based on the Zero output of the ALU.

Creating a Single Datapath

Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the control
to complete the implementation. This simplest datapath will attempt to execute all
instructions in one clock cycle. This means that no datapath resource can be used
more than once per instruction, so any element needed more than once must be
duplicated. We therefore need a memory for instructions separate from one for
data. Although some of the functional units will need to be duplicated, many of the
elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multiplexor
and control signal to select among the multiple inputs.
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Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

B The arithmetic-logical instructions use the ALU, with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-
extended 16-bit offset field from the instruction.

B The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register file
and a single ALU to handle both types of instructions, adding any necessary
multiplexors.

To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two different
sources for the data stored into the register file. Thus, one multiplexor is placed
at the ALU input and another at the data input to the register file. Figure 4.10
shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the core
MIPS architecture by adding the datapath for instruction fetch (Figure 4.6), the
datapath from R-type and memory instructions (Figure 4.10), and the datapath
for branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing
the separate pieces. The branch instruction uses the main ALU for comparison of
the register operands, so we must keep the adder from Figure 4.9 for computing
the branch target address. An additional multiplexor is required to select either the
sequentially following instruction address (PC + 4) or the branch target address to
be written into the PC.

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The
ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

I.  Which of the following is correct for a load instruction? Refer to Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be sent to the
register file.

Check
Yourself
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Instruction !
—

Regdt ) 4| ALU operation
regisier dR?a? MemWrite
ata
Read Zero MemtoReg
register 2 . ALUSrc ALU
. Registers g g 5 ALU Address Read 1
Write data 2 result data M
register M u
. X X
| Write —1 0
data Writ Data
: rite
RegWrite data memory
T
16 Sign- 32 MemRead
extend

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how a single
datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the

example.

PCSrc
M
Add u
X
ALU
4= Add gt
Read —| Read ALUSrc 4. ALU operation
address register 1 Read | MemWrite
1 Read datat MemtoReg
' i Zero |—*
Instruction ¢ rengtgezgisters Read
Write Read | Address  © o >

Instruction | | register data 2 M ata

memory ] g

| data
Write  Data
RegWrite data memory
MemRead
16 Sign- 32
extend

FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different
instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store
word, ALU operations, and branches) in a single clock cycle. Just one additional multiplexor is needed to integrate branches. The support for
jumps will be added later.
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b. MemtoReg should be set to cause the correct register destination to be
sent to the register file.

c. Wedo not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have
separate instruction and data memories, because

a. the formats of data and instructions are different in MIPS, and hence
different memories are needed.
b. having separate memories is less expensive.

the processor operates in one cycle and cannot use a single-ported
memory for two different accesses within that cycle

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple implementation using
the datapath of the last section and adding a simple control function. This simple
implementation covers load word (1W), store word (SW), branch equal (be(), and
the arithmetic-logical instructions add, sub, AND, OR,and set on Tless
than. We will later enhance the design to include a jump instruction (J).

The ALU Control

The MIPS ALU in [
control inputs:

Appendix B defines the 6 following combinations of four

ALU control lines | Function |

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set not
found in the subset we are implementing.) For load word and store word instructions,
we use the ALU to compute the memory address by addition. For the R-type
instructions, the ALU needs to perform one of the five actions (AND, OR, subtract,
add, or set on less than), depending on the value of the 6-bit funct (or function) field
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in the low-order bits of the instruction (see Chapter 2). For branch equal, the ALU
must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the function field of the instruction and a 2-bit control field, which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (01) for beq, or determined by the operation
encoded in the funct field (10). The output of the ALU control unit is a 4-bit signal
that directly controls the ALU by generating one of the 4-bit combinations shown
previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. Later in this chapter we will see how
the ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementation
technique. Using multiple levels of control can reduce the size of the main control
unit. Using several smaller control units may also potentially increase the speed of
the control unit. Such optimizations are important, since the speed of the control
unit is often critical to clock cycle time.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the four ALU operation control bits.
Because only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the
interesting combinations of the function code field and the ALUOp bits, as we've

Instruction Instruction Desired ALU control
opcode operation ALU action input
LW 00 add

load word XXXXXX 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don’t care” about the value of the function code, and the funct field is shown as XXXXXX. When
the ALUOp value is 10, then the function code is used to set the ALU control input. See [ Appendix B.
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done in Figure 4.13; this truth table shows how the 4-bit ALU control is set
depending on these two input fields. Since the full truth table is very large (2° = 256
entries) and we don't care about the value of the ALU control for many of these input
combinations, we show only the truth table entries for which the ALU control must
have a specific value. Throughout this chapter, we will use this practice of showing
only the truth table entries for outputs that must be asserted and not showing those
that are all deasserted or don’t care. (This practice has a disadvantage, which we
discuss in Section D.2 of ] Appendix D.)

Because in many instances we do not care about the values of some of the inputs,
and because we wish to keep the tables compact, we also include don’t-care terms.
A dont-care term in this truth table (represented by an X in an input column)
indicates that the output does not depend on the value of the input corresponding
to that column. For example, when the ALUOp bits are 00, as in the first row of
Figure 4.13, we always set the ALU control to 0010, independent of the function
code. In this case, then, the function code inputs will be don't cares in this line of
the truth table. Later, we will see examples of another type of don’t-care term. If you
are unfamiliar with the concept of don't-care terms, see [ Appendix B for more
information.

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section D.2 of @] Appendix D.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let’s identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review

C mwe | ruttew
awori [ awoww [ s [ w4 [ rs [r2 [73 [0 | operstion
X X X X X

0 0 X 0010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0000
1 X X X 0 1 0 1 0001
1 X X X 1 0 1 0 0111

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the
ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don'’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first 2
bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX
in the truth table.

truth table From logic, a
representation of a logical
operation by listing all the
values of the inputs and
then in each case showing
what the resulting outputs
should be.

don’t-care term An
element of a logical
function in which the
output does not depend
on the values of all the
inputs. Don’t-care terms
may be specified in
different ways.



262

Chapter 4 The Processor

opcode The field that
denotes the operation and
format of an instruction.

Field 0 rs rt rd shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
a. R-type instruction

Field 35 0r 43 rs rt address
Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction

Field 4 rs rt address
Bit positions 31:26 25:21 20:16 15:0
c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss shortly.
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, sub, AND, OR, and s 1t. The shamt field is used only for shifts; we will ignore it
in this chapter. (b) Instruction format for load (opcode = 35 _ ) and store (opcode = 43 ) instructions. The

ten ten

register rs is the base register that is added to the 16-bit address field to form the memory address. For loads,
rt is the destination register for the loaded value. For stores, rt is the source register whose value should be
stored into memory. (c) Instruction format for branch equal (opcode =4). The registers rs and rt are the
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC + 4 to compute the branch target address.

the formats of the three instruction classes: the R-type, branch, and load-store
instructions. Figure 4.14 shows these formats.

There are several major observations about this instruction format that we will
rely on:

B The op field, which as we saw in Chapter 2 is called the opcode, is always
contained in bits 31:26. We will refer to this field as Op[5:0].

B The two registers to be read are always specified by the rs and rt fields, at
positions 25:21 and 20:16. This is true for the R-type instructions, branch
equal, and store.

B The base register for load and store instructions is always in bit positions
25:21 (rs).

B The 16-bit offset for branch equal, load, and store is always in positions 15:0.

B The destination register is in one of two places. For a load it is in bit positions
20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd).
Thus, we will need to add a multiplexor to select which field of the instruction
is used to indicate the register number to be written.

The first design principle from Chapter 2—simplicity favors regularity—pays off
here in specifying control.
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Instruction [5:0]
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FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end

of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register file) to the simple datapath.
Figure 4.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the seven other control signals do informally before we
determine how to set these control signals during instruction execution. Figure
4.16 describes the function of these seven control lines.

Now that we have looked at the function of each of the control signals, we can
look at how to set them. The control unit can set all but one of the control signals
based solely on the opcode field of the instruction. The PCSrc control line is the
exception. That control line should be asserted if the instruction is branch on equal
(a decision that the control unit can make) and the Zero output of the ALU, which
is used for equality comparison, is asserted. To generate the PCSrc signal, we will
need to AND together a signal from the control unit, which we call Branch, with
the Zero signal out of the ALU.
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Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element
can create timing problems. (See &2 Appendix B for further discussion of this problem.)

These nine control signals (seven from Figure 4.16 and two for ALUOp) can
now be set on the basis of six input signals to the control unit, which are the opcode
bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control
signals.

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don't care (X) for each of the opcode values. Figure 4.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath

With the information contained in Figures 4.16 and 4.18, we can design the control
unitlogic, but before we do that, let’s look at how each instruction uses the datapath.
In the next few figures, we show the flow of three different instruction classes
through the datapath. The asserted control signals and active datapath elements
are highlighted in each of these. Note that a multiplexor whose control is 0 has
a definite action, even if its control line is not highlighted. Multiple-bit control
signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such
asadd $tl1,$t2,$t3. Although everything occurs in one clock cycle, we can
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Add

Instruction [31-26]
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RegWrite

Read
address
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Instruction [15-0]

Read
register 1 Reaq

Read data 1
register 2
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data Registers

“xc=

16@32

Instruction [5-0]

Read
data

Address

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.

think of four steps to execute the instruction; these steps are ordered by the flow
of information:

1.
2.

The instruction is fetched, and the PC is incremented.

Two registers, $t2 and $t3, are read from the register file; also, the main
control unit computes the setting of the control lines during this step.

The ALU operates on the data read from the register file, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function.
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Memto- Reg- Mem-
RegDst Reg Write Read Branch ALUOpPO
1 1 0 ]

R-format 0 0 0 1 0
Tw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 (0] 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first
row of the table corresponds to the R-format instructions (add, sub, AND, OR, and s 1t). For all these instructions, the source register fields
are rs and rt, and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction
writes a register (Reg-Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type
instructions is set to 10 to indicate that the ALU control should be generated from the funct field. The second and third rows of this table give the
control signal settings for 1w and Sw. These ALUSrc and ALUOPp fields are set to perform the address calculation. The MemRead and MemWrite
are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The
branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch is set for a
subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is 0: since
the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last two rows
of the table is replaced with X for don’t care. Don't cares can also be added to RegDst when RegWrite is 0. This type of don’t care must be added
by the designer, since it depends on knowledge of how the datapath works.
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MemRead
Instruction [31-26] MemtoReg
Control ALUOD
MemWrite
| ALUSrc
RegWrite

Instruction [25-21] Read
.| pc lé»| Read register 1
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Instruction [20—16] Read data 1
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Instruction [5-0]

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. The control lines, datapath units,
and connections that are active are highlighted.
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4. 'The result from the ALU is written into the register file using bits 15:11 of the
instruction to select the destination register ($t1).

Similarly, we can illustrate the execution of a load word, such as

Tw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and
asserted control lines for a load. We can think of a load instruction as operating in
five steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. A register ($t2) value is read from the register file.

Add I

4 Add

ALU
result

- xe=2 ©

RegDst
Branch
MemRead
Instruction [31-26] MemtoReg
Control ALUOD
MemWrite
| ALUSrc
RegWrite

Instruction [25-21] Read
| pc fes| Read register 1
address Read
Instruction [20—16] Read data 1
Instruction | | § 6 register 2
(31-0] M| | write Read Address R:aatg 1
Instruction | | ||nstruction [15-11] g register data 2 M
memory | 1 u
Write 0
data Registers

Instruction [15-0] 16 @ 32

Instruction [5-0]

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active
are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to
the register file would not occur.
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3. The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (0f fset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1).

Finally, we can show the operation of the branch-on-equal instruction, such as
beq $tl, $t2, offset, in the same fashion. It operates much like an R-format
instruction, but the ALU output is used to determine whether the PC is written with
PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

Add I

ALU
result

- xc= ©
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RegDst
Branch
MemRead
Instruction [31-26] MemtoReg
Control ALUOp
MemWrite
| ALUSrc
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register 1 Reaq
Instruction [20—16] Read data 1
Instruction register 2
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FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units, and connections
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program
counter from between the two candidates.
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2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the register file. The
value of PC + 4 is added to the sign-extended, lower 16 bits of the instruction
(of fset) shifted left by two; the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to store
into the PC.

Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 4.18. The outputs are the control lines, and the input is the
6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs
based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section D.2 in [ Appendix D.

Op5 0

Inputs

Op4
Op3
Op2
Op1l
Op0
Outputs RegDst
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
Branch
ALUOp1
ALUOpPO

RO ||| |x<|O|x<|o|lo|lmr|lOo|lo|O

O |||l |O|lO|— Ol |O
ol|lo|lo|lo|~|r|r|—|lo|—|—|lololo]|—
[} Il fol sl ol Fal Dadl Bl P L L k=2 Bl k=0

FIGURE 4.22 The control function for the simple single-cycle implementation is
completely specified by this truth table. The top half of the table gives the combinations of input
signals that correspond to the four opcodes, one per column, that determine the control output settings.
(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom
portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for
two different combinations of the inputs. If we consider only the four opcodes shown in this table, then we
can simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 - Op2, since this is sufficient to distinguish the R-format instructions
from Tw, Sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.
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single-cycle
implementation Also
called single clock cycle
implementation. An
implementation in which
an instruction is executed
in one clock cycle. While
easy to understand, it is
too slow to be practical.

Now that we have a single-cycle implementation of most of the MIPS core
instruction set, let’s add the jump instruction to show how the basic datapath and
control can be extended to handle other instructions in the instruction set.

Implementing Jumps

Figure 4.17 shows the implementation of many of the instructions we looked at
in Chapter 2. One class of instructions missing is that of the jump instruction.
Extend the datapath and control of Figure 4.17 to include the jump instruction.
Describe how to set any new control lines.

The jump instruction, shown in Figure 4.23, looks somewhat like a branch
instruction but computes the target PC differently and is not conditional. Like
a branch, the low-order 2 bits of a jump address are always 00_ . The next
lower 26 bits of this 32-bit address come from the 26-bit immediate field in the
instruction. The upper 4 bits of the address that should replace the PC come
from the PC of the jump instruction plus 4. Thus, we can implement a jump by
storing into the PC the concatenation of

B the upper 4 bits of the current PC + 4 (these are bits 31:28 of the
sequentially following instruction address)

B the 26-bit immediate field of the jump instruction
B the bits 00

Figure 4.24 shows the addition of the control for jump added to Figure 4.17. An
additional multiplexor is used to select the source for the new PC value, which
is either the incremented PC (PC + 4), the branch target PC, or the jump target
PC. One additional control signal is needed for the additional multiplexor. This
control signal, called Jump, is asserted only when the instruction is a jump—

that is, when the opcode is 2.

Field ‘ 000010 ‘ address
Bit positions 31:26 25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit
address field in the jump instruction and adding 00 as the 2 low-order bits.
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Instruction [25-0] @ Jump address [31-0]
left 2
26 28 | pC + 4 [31-28] ) L
Add l\lil I\dl
X X
ALU
4 Add result 1 0
RegDst
Jump
Branch
MemRead
Instruction [31-26] MemtoReg
Control ALUOp
MemWrite
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RegWrite
Instruction [25-21] Read
PC &~ Read register 1
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Instruction [20—16] Read data 1
Instruction oo 6 register 2
(31-0] M1 [ write Read (0 Address Rdea?(g (1
Instruction | || |nsruction [15-11]| & || register 42t 2 M M
memory 1 u u
Write X
= 1 0
data Registers
Instruction [15-0 16 m 32
[ ] Sign ALU
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FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at
the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This
multiplexor is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a
32-bit address.

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in
modern designs because it is inefficient. To see why this is so, notice that the clock
cycle must have the same length for every instruction in this single-cycle design.
Of course, the longest possible path in the processor determines the clock cycle.
This path is almost certainly a load instruction, which uses five functional units
in series: the instruction memory, the register file, the ALU, the data memory, and
the register file. Although the CPI is 1 (see Chapter 1), the overall performance of
a single-cycle implementation is likely to be poor, since the clock cycle is too long.

The penalty for using the single-cycle design with a fixed clock cycle is significant,
but might be considered acceptable for this small instruction set. Historically, early
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COMMON CASE FAST

Check
Yourself

Never waste time.
American proverb

pipelining An
implementation
technique in which
multiple instructions are
overlapped in execution,
much like an assembly

line.

PIPELINING

computers with very simple instruction sets did use this implementation technique.
However, if we tried to implement the floating-point unit or an instruction set with
more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay
for all instructions, it’s useless to try implementation techniques that reduce the
delay of the common case but do not improve the worst-case cycle time. A single-
cycle implementation thus violates the great idea from Chapter 1 of making the
common case fast.

In next section, well look at another implementation technique, called
pipelining, that uses a datapath very similar to the single-cycle datapath but is
much more efficient by having a much higher throughput. Pipelining improves
efficiency by executing multiple instructions simultaneously.

Look at the control signals in Figure 4.22. Can you combine any together? Can any
control signal output in the figure be replaced by the inverse of another? (Hint: take
into account the don't cares.) If so, can you use one signal for the other without
adding an inverter?

An Overview of Pipelining

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is nearly universal.

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concentrate
on this section and then skip to Sections 4.10 and 4.11 to see an introduction to the
advanced pipelining techniques used in recent processors such as the Intel Core i7
and ARM Cortex-A8. If you are interested in exploring the anatomy of a pipelined
computer, this section is a good introduction to Sections 4.6 through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

When your roommate is done, start over with the next dirty load.

The pipelined approach takes much less time, as Figure 4.25 shows. As soon
as the washer is finished with the first load and placed in the dryer, you load the
washer with the second dirty load. When the first load is dry, you place it on the
table to start folding, move the wet load to the dryer, and put the next dirty load
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into the washer. Next you have your roommate put the first load away, you start
folding the second load, the dryer has the third load, and you put the fourth load
into the washer. At this point all steps—called stages in pipelining—are operating
concurrently. As long as we have separate resources for each stage, we can pipeline
the tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the reason
pipelining is faster for many loads is that everything is working in parallel, so more
loads are finished per hour. Pipelining improves throughput of our laundry system.
Hence, pipelining would not decrease the time to complete one load of laundry,
but when we have many loads of laundry to do, the improvement in throughput
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work
to do, then the speed-up due to pipelining is equal to the number of stages in the

6 PM 7 8 9 10 11 12 1 2 AM

Time —Jm e o] e o e ]

Task

order —
» @0=El__
; 95==l_ _

c 95=l__
b S5=M{

. 6 PM 7 8 9 10 11 12 1 2 AM
Time
W | | | | |
Task
order
A

- @0l
c B0=l
0 LEEE

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty
clothes to be washed, dried, folded, and put away. The washer, dryer, “folder;” and “storer” each take 30
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes
just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four resources
on this two-dimensional time line, but we really have just one of each resource.
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pipeline, in this case four: washing, drying, folding, and putting away. Therefore,
pipelined laundry is potentially four times faster than nonpipelined: 20 loads would
take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20
times as long as 1 load. It’s only 2.3 times faster in Figure 4.25, because we only
show 4 loads. Notice that at the beginning and end of the workload in the pipelined
version in Figure 4.25, the pipeline is not completely full; this start-up and wind-
down affects performance when the number of tasks is not large compared to the
number of stages in the pipeline. If the number of loads is much larger than 4, then
the stages will be full most of the time and the increase in throughput will be very
close to 4.

The same principles apply to processors where we pipeline instruction-execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.
4. Access an operand in data memory.
5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following
example shows that pipelining speeds up instruction execution just as it speeds up
the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and in
the rest of this chapter, we limit our attention to eight instructions: load word
(Tw), store word (sw), add (add), subtract (sub), AND (and), OR (or), set
less than (s 1t), and branch on equal (beq).

Compare the average time between instructions of a single-cycle
implementation, in which all instructions take one clock cycle, to a pipelined
implementation. The operation times for the major functional units in this
example are 200 ps for memory access, 200 ps for ALU operation, and 100 ps
for register file read or write. In the single-cycle model, every instruction takes
exactly one clock cycle, so the clock cycle must be stretched to accommodate
the slowest instruction.

Figure 4.26 shows the time required for each of the eight instructions.
The single-cycle design must allow for the slowest instruction—in Figure

4.26 it is 1w—so the time required for every instruction is 800 ps. Similarly
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to Figure 4.25, Figure 4.27 compares nonpipelined and pipelined execution
of three load word instructions. Thus, the time between the first and fourth
instructions in the nonpipelined design is 3 x 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be long
enough to accommodate the slowest operation. Just as the single-cycle design
must take the worst-case clock cycle of 800 ps, even though some instructions
can be as fast as 500 ps, the pipelined execution clock cycle must have the
worst-case clock cycle of 200 ps, even though some stages take only 100 ps.
Pipelining still offers a fourfold performance improvement: the time between
the first and fourth instructions is 3 x 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Time between Instruction npipelined

Time between instructions

pipelined Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up
from pipelining is approximately equal to the number of pipe stages; a five-stage
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. Moreover,
pipelining involves some overhead, the source of which will be clearer shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

Instruction | Register Data | Register | Total
Instruction class fetch read operatlon access write time

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store word (Sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR, sTt)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.
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FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in
bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see
a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource,
either the ALU operation or the memory access. We assume the write to the register file occurs in the first
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption
throughout this chapter.

Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it's 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of instructions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined example; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 x 200 ps + 1400 ps, or 200,001,400
ps. In the nonpipelined example, we would add 1,000,000 instructions, each
taking 800 ps, so total execution time would be 1,000,000 x 800 ps + 2400 ps, or
800,002,400 ps. Under these conditions, the ratio of total execution times for real
programs on nonpipelined to pipelined processors is close to the ratio of times
between instructions:

800,002,400ps _ 800ps
200,001,400ps  200ps

= 4.00
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Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruction
throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 15 bytes, pipelining is considerably more challenging. Recent implementations
of the x86 architecture actually translate x86 instructions into simple operations
that look like MIPS instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline stages.
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restriction
means we can use the execute stage to calculate the memory address and then
access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different

types.

Hazards

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn’t put clothes away. Our carefully scheduled
pipeline plans would then be foiled.

structural hazard When
a planned instruction
cannot execute in the
proper clock cycle because
the hardware does not
support the combination
of instructions that are set
to execute.
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data hazard Also
called a pipeline data
hazard. When a planned
instruction cannot
execute in the proper
clock cycle because data
that is needed to execute
the instruction is not yet
available.

forwarding Also called
bypassing. A method of
resolving a data hazard
by retrieving the missing
data element from
internal buffers rather
than waiting for it to
arrive from programmer-
visible registers or
memory.

As we said above, the MIPS instruction set was designed to be pipelined,
making it fairly easy for designers to avoid structural hazards when designing a
pipeline. Suppose, however, that we had a single memory instead of two memories.
If the pipeline in Figure 4.27 had a fourth instruction, we would see that in the
same clock cycle the first instruction is accessing data from memory while the
fourth instruction is fetching an instruction from that same memory. Without two
memories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads must wait that have completed drying and are ready to
fold as well as those that have finished washing and are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that does not
really exist when doing laundry). For example, suppose we have an add instruction
followed immediately by a subtract instruction that uses the sum ($s0):

add
sub

$s0,
$t2,

$t0,
$s0,

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

$tl
$t3

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.25.
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) 200 400 600 800 1000
Time T T T T T

add $s0, $t0, $t1 IF L ID EX MEM WB

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to
the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage,
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data
memory; and WB for the write-back stage, with the drawing showing the register file being written. The
shading indicates the element is used by the instruction. Hence, MEM has a white background because add
does not access the data memory. Shading on the right half of the register file or memory means the element
is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage
because the register file is written.

Figure 4.29 shows the connection to forward the value in $50 after the
execution stage of the add instruction as input to the execution stage of the
Sub instruction.

In this graphical representation of events, forwarding paths are valid only if the
destination stage is later in time than the source stage. For example, there cannot
be a valid forwarding path from the output of the memory access stage in the first
instruction to the input of the execution stage of the following, since that would
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot
prevent all pipeline stalls, however. For example, suppose the first instruction was a
load of $50 instead of an add. As we can imagine from looking at Figure 4.29, the

Program

execution . 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 IF =

WB

sub $t2, $s0, $t3 MEM WB

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for S ub, replacing the value from register
$50 read in the second stage of sub.
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load-use data hazard
A specific form of data
hazard in which the data
being loaded by a load
instruction has not yet
become available when
it is needed by another
instruction.

pipeline stall Also called
bubble. A stall initiated
in order to resolve a
hazard.

Program
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sub $t2, $s0, $t3 IF C 1D MEM+—— WB

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following
a load tries to use the data. Without the stall, the path from memory access stage output to execution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

desired data would be available only after the fourth stage of the first instruction
in the dependence, which is too late for the input of the third stage of sub. Hence,
even with forwarding, we would have to stall one stage for a load-use data hazard,
as Figure 4.30 shows. This figure shows an important pipeline concept, officially
called a pipeline stall, but often given the nickname bubble. We shall see stalls
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like
these, using either hardware detection and stalls or software that reorders code to
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Stalls
Consider the following code segment in C:

a=»>b+e;
c=b+f;

Here is the generated MIPS code for this segment, assuming all variables are in
memory and are addressable as offsets from $t0:

Tw $t1, 0($t0)
Tw $t2, 4($t0)
add $t3, $tl,$t2
Sw $t3, 12($t0)
Tw $t4, 8($t0)
add $th, $tl,$t4
sw $t5, 16(3$t0)
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Find the hazards in the preceding code segment and reorder the instructions
to avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence
on the immediately preceding | w instruction. Notice that bypassing eliminates
several other potential hazards, including the dependence of the first add on
the first 1w and any hazards for store instructions. Moving up the third Tw
instruction to become the third instruction eliminates both hazards:

Tw  $tl, 0($t0)
Tw  $t2, 4($t0)
Tw $t4, 8(3%t0)
add $t3, $tl1,$t2
SW $t3, 12(%t0)
add $thH, $tl1,$t4
sw o $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will
complete in two fewer cycles than the original version.

Forwarding yields another insight into the MIPS architecture, in addition to the
four mentioned on page 277. Each MIPS instruction writes at most one result and
does this in the last stage of the pipeline. Forwarding is harder if there are multiple
results to forward per instruction or if there is a need to write a result early on in
instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. “Bypassing” comes from
passing the result around the register file to the desired unit.

Control Hazards

The third type of hazard is called a control hazard, arising from the need to make a
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms
of a football team. Given how filthy the laundry is, we need to determine whether
the detergent and water temperature setting we select is strong enough to get the
uniforms clean but not so strong that the uniforms wear out sooner. In our laundry
pipeline, we have to wait until after the second stage to examine the dry uniform to
see if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula.

This conservative option certainly works, but it is slow.

control hazard Also
called branch hazard.
When the proper
instruction cannot
execute in the proper
pipeline clock cycle
because the instruction
that was fetched is not the
one that is needed; that
is, the flow of instruction
addresses is not what the
pipeline expected.
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The equivalent decision task in a computer is the branch instruction. Notice that
we must begin fetching the instruction following the branch on the very next clock
cycle. Nevertheless, the pipeline cannot possibly know what the next instruction
should be, since it only just received the branch instruction from memory! Just as
with laundry, one possible solution is to stall immediately after we fetch a branch,
waiting until the pipeline determines the outcome of the branch and knows what
instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test registers,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline
involving conditional branches would look like Figure 4.31. The 1w instruction,
executed if the branch fails, is stalled one extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1.

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions
executed in SPECint2006. Since the other instructions run have a CPI of 1,
and branches took one extra clock cycle for the stall, then we would see a CPI
of 1.17 and hence a slowdown of 1.17 versus the ideal case.

Program
execution Ti 200 400 600 800 1000 1200 1400
order ime T T T T T T T
(in instructions)

add$4,85,86 |"G&"| |Ree| AU | L5 [Res

Instruction Data
beq $1, $2, 40 ‘—'200 o |_feten Reg| ALU access | k€9
bubbley/(bubble¢( bubble/(bubble/(bubble
O
or $7, $8, $9 ~———————|Instruction Data
400 ps fetch Reg| ALY access | R®9

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control
hazards. This example assumes the conditional branch is taken, and the instruction at the destination of
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance,
however, is the same as would occur if a bubble were inserted.
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If we cannot resolve the branch in the second stage, as is often the case for longer
pipelines, then we'd see an even larger slowdown if we stall on branches. The cost of
this option is too high for most computers to use and motivates a second solution
to the control hazard using one of our great ideas from Chapter 1:

Predict: If you're pretty sure you have the right formula to wash uniforms, then
just predict that it will work and wash the second load while waiting for the first
load to dry.

This option does not slow down the pipeline when you are correct. When you are
wrong, however, you need to redo the load that was washed while guessing the
decision.

Computers do indeed use prediction to handle branches. One simple approach
is to predict always that branches will be untaken. When you’re right, the pipeline
proceeds at full speed. Only when branches are taken does the pipeline stall. Figure
4.32 shows such an example.

Program
execution 7o 200 400 600 800 1000 1200 1400
Order T T T T T T T
(in instructions)
a00$4,35,56 [0 [rea| mu [ 202 Jreg
Instruction Data
beq $1, $2, 40 m fetch Reg| ALU access | R®9
~<——|Instruction Data
Iw $3, 300($0) 200 ps| fetch Reg| ALU access | %9
Program
execution ;- 200 400 600 800 1000 1200 1400
Order T T T T T T T
(in instructions)
add $4, 95,96 |"&”| |Res| AW | T | Res
Instruction Data
beq $1, $2, 40 m fetch Reg| ALU access |9
ubble/(bubble/(bubble/( bubble/(bubble
©
or $7, $8, $9 <+—————————instruction Data
400 ps fetch Reg| AW access | 79

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details.

PREDICTION
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branch prediction

A method of resolving

a branch hazard that
assumes a given outcome
for the branch and
proceeds from that
assumption rather than
waiting to ascertain the
actual outcome.

PREDICTION

A more sophisticated version of branch prediction would have some branches
predicted as taken and some as untaken. In our analogy, the dark or home uniforms
might take one formula while the light or road uniforms might take another. In the
case of programming, at the bottom of loops are branches that jump back to the top
of the loop. Since they are likely to be taken and they branch backward, we could
always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior
and don’t account for the individuality of a specific branch instruction. Dynamic
hardware predictors, in stark contrast, make their guesses depending on the
behavior of each branch and may change predictions for a branch over the life of
a program. Following our analogy, in dynamic prediction a person would look at
how dirty the uniform was and guess at the formula, adjusting the next prediction
depending on the success of recent guesses.

One popular approach to dynamic prediction of branches is keeping a history
for each branch as taken or untaken, and then using the recent past behavior
to predict the future. As we will see later, the amount and type of history kept
have become extensive, with the result being that dynamic branch predictors can
correctly predict branches with more than 90% accuracy (see Section 4.8). When
the guess is wrong, the pipeline control must ensure that the instructions following
the wrongly guessed branch have no effect and must restart the pipeline from the
proper branch address. In our laundry analogy, we must stop taking new loads so
that we can restart the load that we incorrectly predicted.

Asin the case of all other solutions to control hazards, longer pipelines exacerbate
the problem, in this case by raising the cost of misprediction. Solutions to control
hazards are described in more detail in Section 4.8.

Elaboration: There is a third approach to the control hazard, called delayed decision.
In our analogy, whenever you are going to make such a decision about laundry, just place
a load of nonfootball clothes in the washer while waiting for football uniforms to dry. As
long as you have enough dirty clothes that are not affected by the test, this solution
works fine.

Called the delayed branch in computers, and mentioned above, this is the solution
actually used by the MIPS architecture. The delayed branch always executes the next
sequential instruction, with the branch taking place after that one instruction delay.
It is hidden from the MIPS assembly language programmer because the assembler
can automatically arrange the instructions to get the branch behavior desired by the
programmer. MIPS software will place an instruction immediately after the delayed
branch instruction that is not affected by the branch, and a taken branch changes
the address of the instruction that follows this safe instruction. In our example, the
add instruction before the branch in Figure 4.31 does not affect the branch and can
be moved after the branch to fully hide the branch delay. Since delayed branches are
useful when the branches are short, no processor uses a delayed branch of more
than one cycle. For longer branch delays, hardware-based branch prediction is usually
used.



4.5 An Overview of Pipelining

285

Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in
a sequential instruction stream. It has the substantial advantage that, unlike
programming a multiprocessor, it is fundamentally invisible to the programmer.

In the next few sections of this chapter, we cover the concept of pipelining using
the MIPS instruction subset from the single-cycle implementation in Section 4.4
and show a simplified version of its pipeline. We then look at the problems that
pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the software and the performance implications of
pipelining, you now have sufficient background to skip to Section 4.10. Section
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is
implemented and the challenges of dealing with hazards, you can proceed to
examine the design of a pipelined datapath and the basic control, explained in
Section 4.6. You can then use this understanding to explore the implementation of
forwarding and stalls in Section 4.7. You can then read Section 4.8 to learn more
about solutions to branch hazards, and then see how exceptions are handled in
Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using
only forwarding, or can execute without stalling or forwarding.

Tw  $t0,0($t0) add  $t1,$t0,$t0 addi  $t1,$t0,#1
add  $t1,$t0,$t0 addi  $t2,$t0,4#5 addi  $t2,$t0,#2
addi  $t4,$t1,#5 addi  $t3,$t0,4#2
addi  $t3,$t0,4#4
addi  $t5,$t0,#5

>~

PARALLELISM

PIPELINING

Check
Yourself

Outside the memory system, the effective operation of the pipeline is usually
the most important factor in determining the CPI of the processor and hence its
performance. As we will see in Section 4.10, understanding the performance of a
modern multiple-issue pipelined processor is complex and requires understanding
more than just the issues that arise in a simple pipelined processor. Nonetheless,
structural, data, and control hazards remain important in both simple pipelines
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually more
of a problem in integer programs, which tend to have higher branch frequencies
as well as less predictable branches. Data hazards can be performance bottlenecks

Understanding
Program
Performance
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PIPELINING

the BIG

Picture

latency (pipeline) The
number of stages in a
pipeline or the number
of stages between two
instructions during
execution.

PREDICTION

There is less in this
than meets the eye.

Tallulah
Bankhead, remark
to Alexander
Woollcott, 1922

in both integer and floating-point programs. Often it is easier to deal with data
hazards in floating-point programs because the lower branch frequency and more
regular memory access patterns allow the compiler to try to schedule instructions
to avoid hazards. It is more difficult to perform such optimizations in integer
programs that have less regular memory access, involving more use of pointers.
As we will see in Section 4.10, there are more ambitious compiler and hardware
techniques for reducing data dependences through scheduling.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction,
also called the latency. For example, the five-stage pipeline still takes 5
clock cycles for the instruction to complete. In the terms used in Chapter
1, pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data hazards.
Branch prediction and forwarding help make a computer fast while still getting
the right answers.

Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage
pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID:Instruction decode and register file read
3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.33, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the
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IF: Instruction fetch

ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access
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register 2

Registers

Write Read

register data 2
| Write

data

Zero

ALU ALy
result

Address

16

N Sign-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
-4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

32
@

WB: Write back

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped
onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are

data lines.)

five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they

never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

B The write-back stage, which places the result back into the register file in the

middle of the datapath

B The selection of the next value of the PC, choosing between the incremented

PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; these
reverse data movements influence only later instructions in the pipeline. Note that
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the first right-to-left flow of data can lead to data hazards and the second leads to
control hazards.

One way to show what happens in pipelined execution is to pretend that each
instruction has its own datapath, and then to place these datapaths on a timeline to
show their relationship. Figure 4.34 shows the execution of the instructions in Figure
4.27 by displaying their private datapaths on a common timeline. We use a stylized
version of the datapath in Figure 4.33 to show the relationships in Figure 4.34.

Figure 4.34 seems to suggest that three instructions need three datapaths.
Instead, we add registers to hold data so that portions of a single datapath can be
shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used during
only one of the five stages of an instruction, allowing it to be shared by following
instructions during the other four stages. To retain the value of an individual
instruction for its other four stages, the value read from instruction memory must
be saved in a register. Similar arguments apply to every pipeline stage, so we must
place registers wherever there are dividing lines between stages in Figure 4.33.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step.

Time (in clock cycles)

Program
execution CC1
order

(in instructions)

CC3

lw $1, 100($0)

Iw $2, 200($0)

lw $3, 300($0)

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33,
assuming pipelined execution. Similar to Figures 4.28 through 4.30, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure
4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the
register file and sign extender in the instruction decode/register file read stage (ID), and so on. To maintain
proper time order, this stylized datapath breaks the register file into two logical parts: registers read during
register fetch (ID) and registers written during write back (WB). This dual use is represented by drawing
the unshaded left half of the register file using dashed lines in the ID stage, when it is not being written, and
the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the
register file is written in the first half of the clock cycle and the register file is read during the second half.
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Figure 4.35 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline register
to the next. The registers are named for the two stages separated by that register.
For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor—the register file, memory, or
the PC—so a separate pipeline register is redundant to the state that is updated. For
example, a load instruction will place its result in 1 of the 32 registers, and any later
instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline
registers in Figure 4.35, however, the PC is part of the visible architectural state;
its contents must be saved when an exception occurs, while the contents of the
pipeline registers can be discarded. In the laundry analogy, you could think of the
PC as corresponding to the basket that holds the load of dirty clothes before the
wash step.

To show how the pipelining works, throughout this chapter we show sequences
of figures to demonstrate operation over time. These extra pages would seem to
require much more time for you to understand. Fear not; the sequences take much

IF/ID EX/MEM

Address Read

L
PC
L

Instruction

\
v extend

MEM/WB

Address

Data
memory

Read
data

register 1 5;2d1
Read
" register 2
Instruction 9 Registers p
memory » i cad
Write data 2|
register
Write
—>
data
16 sign- | 32 -

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the
IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC
address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64

bits, respectively.
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less time than it might appear, because you can compare them to see what changes
occur in each clock cycle. Section 4.7 describes what happens when there are data
hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our first sequence, show the active portions of the
datapath highlighted as a load instruction goes through the five stages of pipelined
execution. We show a load first because it is active in all five stages. As in Figures
4.28 through 4.30, we highlight the right half of registers or memory when they are
being read and highlight the left half when they are being written.

We show the instruction abbreviation 1w with the name of the pipe stage that is
active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the instruction being
read from memory using the address in the PC and then being placed in the
IF/ID pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This incremented
address is also saved in the IF/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.

2. Instruction decode and register file read: The bottom portion of Figure 4.36
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: Figure 4.37 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load instruction
reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Walking
through a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:
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I Instruction fetch
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L 3 data 1
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I Instruction decode I
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FIGURE 4.36 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in
Figure 4.35 highlighted. The highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2,
the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX
pipeline register. We don’t need all three operands, but it simplifies control to keep all three.
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FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35
used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.

1. Instruction fetch: The instruction is read from memory using the address
in the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figure 4.36 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipeline
register supplies the register numbers for reading two registers and extends
the sign of the 16-bit immediate. These three 32-bit values are all stored
in the ID/EX pipeline register. The bottom portion of Figure 4.36 for load
instructions also shows the operations of the second stage for stores. These
first two stages are executed by all instructions, since it is too early to know
the type of the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step; the
effective address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.40 shows the data being written
to memory. Note that the register containing the data to be stored was read in
an earlier stage and stored in ID/EX. The only way to make the data available
during the MEM stage is to place the data into the EX/MEM pipeline register
in the EX stage, just as we stored the effective address into EX/MEM.
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FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the
datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in the
middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41.
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FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.37, the
second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to

understand.

5. Write-back: The bottom portion of Figure 4.40 shows the final step of the
store. For this instruction, nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way
to accelerate those instructions. Hence, an instruction passes through a
stage even if there is nothing to do, because later instructions are already
progressing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data was first placed
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the
datapath—such as instruction memory, register read ports, ALU, data memory,
and register write port—can be used only within a single pipeline stage. Otherwise,
we would have a structural hazard (see page 277). Hence these components, and
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see it?
Which register is changed in the final stage of the load? More specifically, which
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FIGURE 4.40 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data is written into
data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline
register. Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.
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instruction supplies the write register number? The instruction in the IF/ID pipeline
register supplies the write register number, yet this instruction occurs considerably
after the load instruction!

Hence, we need to preserve the destination register number in the load
instruction. Just as store passed the register contents from the ID/EX to the EX/
MEM pipeline registers for use in the MEM stage, load must pass the register
number from the ID/EX through EX/MEM to the MEM/WB pipeline register for
use in the WB stage. Another way to think about the passing of the register number
is that to share the pipelined datapath, we need to preserve the instruction read
during the IF stage, so each pipeline register contains a portion of the instruction
needed for that stage and later stages.

Figure 4.41 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify
the register to be written. Figure 4.42 is a single drawing of the corrected datapath,
highlighting the hardware used in all five stages of the load word instruction in
Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the
branch instruction work as expected.

Graphically Representing Pipelines

Pipelining can be difficult to understand, since many instructions are simultaneously
executing in a single datapath in every clock cycle. To aid understanding, there are

|

g

IF/ID IDIEX EX/MEM MEM/WB

Add
4 —>|

Address

Instruction
memory

Read
[ register 1 Read ||
data 1
* Read -
register2 Read
= Registers Read Address ol I
R Write data2[ | [
> register Data u
Write memol x
data i 0
° sign- | 32
= extend

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the MEM/
WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color.



4.6 Pipelined Datapath and Control

297

two basic styles of pipeline figures: multiple-clock-cycle pipeline diagrams, such as
Figure 4.34 on page 288, and single-clock-cycle pipeline diagrams, such as Figures
4.36 through 4.40. The multiple-clock-cycle diagrams are simpler but do not contain
all the details. For example, consider the following five-instruction sequence:

Tw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
Tw $13, 24(%1)
add $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these
instructions. Time advances from left to right across the page in these diagrams,
and instructions advance from the top to the bottom of the page, similar to the
laundry pipeline in Figure 4.25. A representation of the pipeline stages is placed
in each portion along the instruction axis, occupying the proper clock cycles.
These stylized datapaths represent the five stages of our pipeline graphically, but
a rectangle naming each pipe stage works just as well. Figure 4.44 shows the more
traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure
4.43 shows the physical resources used at each stage, while Figure 4.44 uses the
name of each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath during
a single clock cycle, and usually all five instructions in the pipeline are identified by
labels above their respective pipeline stages. We use this type of figure to show the
details of what is happening within the pipeline during each clock cycle; typically,

IF/ID

ID/EX

memory

Read
register

Read

1 Read
data 1

register 2

Write
register
Write
data

Registers Roag

data 2

sign-

extend

32

EX/MEM

MEM/WB

Address

memory

Read
data

—

FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction.
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Program
execution
order

(in instructions)

Iw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)
CC1 CC2 CC3 cc4 CC5 CC6 cc7 (o{o:} CC9

R L&
(=] e
[ Fered e
“Reg o
[g|siN fovies

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete
execution of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move
from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw

this diagram.

Check
Yourself

the drawings appear in groups to show pipeline operation over a sequence of
clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining
situations. ([ Section 4.13 gives more illustrations of single-clock diagrams
if you would like to see more details about Figure 4.43.) A single-clock-cycle
diagram represents a vertical slice through a set of multiple-clock-cycle diagrams,
showing the usage of the datapath by each of the instructions in the pipeline at
the designated clock cycle. For example, Figure 4.45 shows the single-clock-cycle
diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the
single-clock-cycle diagrams have more detail and take significantly more space
to show the same number of clock cycles. The exercises ask you to create such
diagrams for other code sequences.

A group of students were debating the efficiency of the five-stage pipeline when
one student pointed out that not all instructions are active in every stage of the
pipeline. After deciding to ignore the effects of hazards, they made the following
four statements. Which ones are correct?
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Time (in clock cycles)
CC1 CcC2 CC3 CcC4 CC5 CC6 cc7 CcCs8 CcC9

Program
execution
order
(in instructions)
Instruction | Instruction ) Data )
Iw $10, 20($1) totch decode | EXeCution | S os | Write-back
Instruction | Instruction . Data .
sub $11, $2, $3 fotch decode Execution access Write-back
Instruction | Instruction . Data .
add $12, $3, $4 tetch decode Execution access Write-back
Instruction | Instruction . Data .
Iw $13, 24($1) tetch decode | Execution | 5o | Write-back
Instruction | Instruction . Data )
add $14, $5, $6 fetch decode | EXecution | "o [ Write-back

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43.

| add $14, $5, $6 | Iw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | Iw $10, 20($1) |
| Instruction fetch [ Instruction decode [ Execution [ Memory [ write-back |
IF/ID ID/EX EX/MEM MEM/WB
—|
Add

0
]
u p{pc dd Read
M S| register 1 Read | |
; < 9 data 1
— H Read
’ ¢ register 2
Instruction = Registers po.g >
memory Write data 2 > "
ata
=" | register X
Wiite s
| data :
16 sign- | 32
| extend —

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

1. Allowing jumps, branches, and ALU instructions to take fewer stages than
the five required by the load instruction will increase pipeline performance
under all circumstances.
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In the 6600 Computer,
perhaps even more
than in any previous
computer, the control

system is the difference.

James Thornton, Design
of a Computer: The
Control Data 6600, 1970

2. Trying to allow some instructions to take fewer cycles does not help, since
the throughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is
some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance.

Pipelined Control

Just as we added control to the single-cycle datapath in Section 4.3, we now add
control to the pipelined datapath. We start with a simple design that views the
problem through rose-colored glasses.

The first step is to label the control lines on the existing datapath. Figure 4.46
shows those lines. We borrow as much as we can from the control for the simple
datapath in Figure 4.17. In particular, we use the same ALU control logic, branch
logic, destination-register-number multiplexor, and control lines. These functions
are defined in Figures 4.12, 4.16, and 4.18. We reproduce the key information in
Figures 4.47 through 4.49 on a single page to make the following discussion easier
to follow.

As was the case for the single-cycle implementation, we assume that the PC is
written on each clock cycle, so there is no separate write signal for the PC. By the
same argument, there are no separate write signals for the pipeline registers (IF/
ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written
during each clock cycle.

To specify control for the pipeline, we need only set the control values during
each pipeline stage. Because each control line is associated with a component active
in only a single pipeline stage, we can divide the control lines into five groups
according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and to
write the PC are always asserted, so there is nothing special to control in this
pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the same thing
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp,
and ALUSrc (see Figures 4.47 and 4.48). The signals select the Result register,
the ALU operation, and either Read data 2 or a sign-extended immediate
for the ALU.
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FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows the control
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct field (function
code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that
these 6 bits are also the 6 least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the
immediate field since sign extension leaves these bits unchanged.

Instruction
opcode
LW 00

Instruction Desired ALU control
operation Function code ALU action input
add

load word XXXXXX 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.47 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on the ALUOp control bits and the
different function codes for the R-type instruction.
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Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write The register destination number for the Write register comes
register comes from the rt field (bits 20:16). from the rd field (bits 15:11).
RegWrite None. The register on the Write register input is written with the value
on the Write data input.
ALUSrc The second ALU operand comes from the second | The second ALU operand is the sign-extended, lower 16 bits of
register file output (Read data 2). the instruction.
PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that computes
computes the value of PC + 4. the branch target.
MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes from the
comes from the ALU. data memory.

FIGURE 4.48 A copy of Figure 4.16. The function of each of seven control signals is defined. The ALU control lines (ALUOp) are defined
in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corresponding
to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46.
If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq
instruction; otherwise, PCSrc is set to 0.

Execution/address calculation stage Memory access stage Write-back stage
control lines control lines control lines
Mem- Reg- Memto-
RegDst ALUOPO Read Write Reg
1 0 1

R-format 1 0 0 0 0 0
Tw 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into three
groups corresponding to the last three pipeline stages.

4. Memory access: The control lines set in this stage are Branch, MemRead, and
MemWrite. The branch equal, load, and store instructions set these signals,
respectively. Recall that PCSrc in Figure 4.48 selects the next sequential
address unless control asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the register file, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged,
we can use the same control values. Figure 4.49 has the same values as in Section
4.4, but now the nine control lines are grouped by pipeline stage.
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WwB
Instruction
— Control M
[ JEX[
IF/ID ID/EX EX/MEM MEM/WB

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines
are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register
extended to hold the control lines; three are used during the MEM stage, and the last two are passed to MEM/
WB for use in the WB stage.

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the pipeline
registers to include control information.

Since the control lines start with the EX stage, we can create the control
information during instruction decode. Figure 4.50 above shows that these control
signals are then used in the appropriate pipeline stage as the instruction moves
down the pipeline, just as the destination register number for loads moves down
the pipeline in Figure 4.41. Figure 4.51 shows the full datapath with the extended
pipeline registers and with the control lines connected to the proper stage.
(B Section 4.13 gives more examples of MIPS code executing on pipelined
hardware using single-clock diagrams, if you would like to see more details.)

Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution and
how the hardware performs the task. It's now time to take off the rose-colored
glasses and look at what happens with real programs. The instructions in Figures
4.43 through 4.45 were independent; none of them used the results calculated
by any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to
pipelined execution.

What do you mean,
why’s it got to be built?
It’s a bypass. You've got
to build bypasses.
Douglas Adams, The

Hitchhiker’s Guide to the
Galaxy, 1979
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FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of
the pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the
ID/EX pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

Let’s look at a sequence with many dependences, shown in color:

sub
and
or
add
Sw

$2, $1,%3
$12,462,%5
$13,%6,9%2
$14,62,%2
$15,100(%2)

## Register $2 written by sub

## 1st operand($2) depends on sub

# 2nd operand($2) depends on sub

## 1st($2) & 2nd($2) depend on sub
## Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the
first instruction. If register $ 2 had the value 10 before the subtract instruction and
—20 afterwards, the programmer intends that —20 will be used in the following
instructions that refer to register $2.
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How would this sequence perform with our pipeline? Figure 4.52 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representation.
To demonstrate the execution of this instruction sequence in our current pipeline,
the top of Figure 4.52 shows the value of register $2, which changes during the
middle of clock cycle 5, when the SuD instruction writes its result.

The last potential hazard can be resolved by the design of the register file
hardware: What happens when a register is read and written in the same clock
cycle? We assume that the write is in the first half of the clock cycle and the read
is in the second half, so the read delivers what is written. As is the case for many
implementations of register files, we have no data hazard in this case.

Figure 4.52 shows that the values read for register $2 would not be the result of
the sub instruction unless the read occurred during clock cycle 5 or later. Thus, the
instructions that would get the correct value of —20 are add and sw; the AND and

Time (in clock cycles)

Value of CC1 CC2 CC3 CC4 CC5 CCo6 cc7
register $2: 10 10 10 10 10/-20 —20 —20

Program
execution
order

(in instructions) M M M

sub $2, $1, $3 Réd | - / Reg
wsnsss ] }E&@
s | @Aé e
sw $15, 100(52) [} -=Reg

CC8 CC9

Bvifeo

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction
writes into $ 2, and all the following instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.
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OR instructions would get the incorrect value 10! Using this style of drawing, such
problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the
EX stage or clock cycle 3. When is the data actually needed by the AND and OR
instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively.
Thus, we can execute this segment without stalls if we simply forward the data as
soon as it is available to any units that need it before it is available to read from the
register file.

How does forwarding work? For simplicity in the rest of this section, we consider
only the challenge of forwarding to an operation in the EX stage, which may be
either an ALU operation or an effective address calculation. This means that when
an instruction tries to use a register in its EX stage that an earlier instruction
intends to write in its WB stage, we actually need the values as inputs to the ALU.

A notation that names the fields of the pipeline registers allows for a more
precise notation of dependences. For example, “ID/EX.RegisterRs” refers to the
number of one register whose value is found in the pipeline register ID/EX; that is,
the one from the first read port of the register file. The first part of the name, to the
left of the period, is the name of the pipeline register; the second part is the name of
the field in that register. Using this notation, the two pairs of hazard conditions are

la. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

The first hazard in the sequence on page 304 is on register $2, between the
result of Sub $2,9$1, $3 and the first read operand of and $12,$2,$5. This
hazard can be detected when the and instruction is in the EX stage and the prior
instruction is in the MEM stage, so this is hazard la:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $ 2

Dependence Detection

Classify the dependences in this sequence from page 304:

sub $2, $1, $3 4 Register $2 set by sub

and $12, $2, $5 4 1st operand($2) set by sub
or $13, $6, $2 4 2nd operand($2) set by sub
add $14, $2, $2 4 1st($2) & 2nd($2) set by sub
sw  $15, 100(%2) # Index($2) set by sub
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As mentioned above, the Sub - and is a type la hazard. The remaining hazards
are as follows:

m The sub-or isatype 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRt = $ 2

m The two dependences on Sub-add are not hazards because the register
file supplies the proper data during the ID stage of add.

B There is no data hazard between sub and sw because Sw reads $2 the
clock cycle after Sub writes $ 2.

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forward when it shouldn't. One solution is simply to check
to see if the RegWrite signal will be active: examining the WB control field of the
pipeline register during the EX and MEM stages determines whether RegWrite
is asserted. Recall that MIPS requires that every use of $0 as an operand must
yield an operand value of 0. In the event that an instruction in the pipeline has
$0 as its destination (for example, S11 $0, $1, 2), we want to avoid forwarding
its possibly nonzero result value. Not forwarding results destined for $0 frees the
assembly programmer and the compiler of any requirement to avoid using $0 as
a destination. The conditions above thus work properly as long we add EX/MEM.
RegisterRd # 0 to the first hazard condition and MEM/WB.RegisterRd # 0 to the
second.

Now that we can detect hazards, half of the problem is resolved—but we must
still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs
to the ALU for the same code sequence as in Figure 4.52. The change is that the
dependence begins from a pipeline register, rather than waiting for the WB stage to
write the register file. Thus, the required data exists in time for later instructions,
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just
ID/EX, then we can forward the proper data. By adding multiplexors to the input
of the ALU, and with the proper controls, we can run the pipeline at full speed in
the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four
R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of
the ALU and pipeline register before and after adding forwarding. Figure 4.55
shows the values of the control lines for the ALU multiplexors that select either the
register file values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/EX pipeline register to determine whether
to forward values. We already have the rt field (bits 20-16). Before forwarding, the
ID/EX register had no need to include space to hold the rs field. Hence, rs (bits
25-21) is added to ID/EX.
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Time (in clock cycles)
CC1 CcC2 CC3 CcC4 CC5 CcCce6 cc7 cCcs8 CC9

Value of register $2: 10 10 10 10 10/-20 20 -20 —20 -20
Value of EX/MEM: X X X -20 X X X X X
Value of MEM/WB: X X X X -20 X X X X

Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14,$2, $2

sw $15, 100($2)

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline
registers. The values in the pipeline registers show that the desired value is available before it is written into the register file. We assume that
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the
register file instead of a pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock
cycle 5 shows register $ 2 having the value 10 at the beginning and —20 at the end of the clock cycle. As in the rest of this section, we handle all
forwarding except for the value to be stored by a store instruction.

Let’s now write both the conditions for detecting hazards and the control signals
to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd = 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10
if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd = 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10
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FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On
the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding
unit. The new hardware is shown in color. This figure is a stylized drawing, however, leaving out details
from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown
twice, once to connect to the Mux and once to the forwarding unit, but it is a single signal. As in the earlier
discussion, this ignores forwarding of a store value to a store instruction. Also note that this mechanism
works for s 1T instructions as well.
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ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed
immediate that is another input to the ALU is described in the Elaboration at the end of this section.

Note that the EX/MEM.RegisterRd field is the register destination for either
an ALU instruction (which comes from the Rd field of the instruction) or a load
(which comes from the Rt field).

This case forwards the result from the previous instruction to either input of the
ALU. If the previous instruction is going to write to the register file, and the write
register number matches the read register number of ALU inputs A or B, provided
it is not register 0, then steer the multiplexor to pick the value instead from the
pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that
the register file supplies the correct result if the instruction in the ID stage reads
the same register written by the instruction in the WB stage. Such a register file
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruction
in the WB stage, the result of the instruction in the MEM stage, and the source
operand of the instruction in the ALU stage. For example, when summing a vector
of numbers in a single register, a sequence of instructions will all read and write to
the same register:

add $1,$1,9%2
add $1,$1,9$3
add $1,%$1,%4
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In this case, the result is forwarded from the MEM stage because the result in the
MEM stage is the more recent result. Thus, the control for the MEM hazard would
be (with the additions highlighted):

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd = 0)
and (EX/MEM.RegisterRd =

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd = 0)
and (EX/MEM.RegisterRd =

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB

ID/EX.RegisterRs))

ID/EX.RegisterRt))

01

01

Figure 4.56 shows the hardware necessary to support forwarding for operations
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the
register destination for either an ALU instruction (which comes from the Rd field
of the instruction) or a load (which comes from the Rt field).
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FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such
as the branch hardware and the sign extension hardware.
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Section 4.13 shows two pieces of MIPS code with hazards that cause
forwarding, if you would like to see more illustrated examples using single-cycle
pipeline drawings.

Elaboration: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. However, consider loads immediately followed by stores, useful
when performing memory-to-memory copies in the MIPS architecture. Since copies are
frequent, we need to add more forwarding hardware to make them run faster. If we were
to redraw Figure 4.53, replacing the sub and AND instructions with Tw and sw, we would
see that it is possible to avoid a stall, since the data exists in the MEM/WB register of
a load instruction in time for its use in the MEM stage of a store instruction. We would
need to add forwarding into the memory access stage for this option. We leave this
modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is
missing from the datapath in Figure 4.56. Since central control decides between register
and immediate, and since the forwarding unit chooses the pipeline register for a register

ID/EX EX/MEM MEM/WB
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>
ALUSrc >
ALU —
M
ol u Data >
X memory
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=\ Forwarding \.e—

> unit -
/

[
(x== ) T

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to select the
signed immediate as an ALU input.
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input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between
the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows this
addition.

Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when If at first you don’t
an instruction tries to read a register following a load instruction that writes succeed, redefine
the same register. Figure 4.58 illustrates the problem. The data is still being read  success.
from memory in clock cycle 4 while the ALU is performing the operation for the  Anonymous
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and its

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC6 Ccc7 CC8 CC9

Program
execution
order

(in instructions) _

Iw $2, 20($1) :R_’eg
and $4, $2, $5 IE— —E:rlgeg
or $8, 52, $6 @—

-1
L

-1
LE

add $9, $4, $2

r— -1
st $1, $6, $7 @— -IReg Il. Reg!

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.
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nop An instruction that
does no operation to
change state.

use. Checking for load instructions, the control for the hazard detection unit is this
single condition:

if (ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline

The first line tests to see if the instruction is a load: the only instruction that reads
data memory is a load. The next two lines check to see if the destination register
field of the load in the EX stage matches either source register of the instruction
in the ID stage. If the condition holds, the instruction stalls one clock cycle. After
this 1-cycle stall, the forwarding logic can handle the dependence and execution
proceeds. (If there were no forwarding, then the instructions in Figure 4.58 would
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by preventing
the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be read
using the same PC, and the registers in the ID stage will continue to be read using
the same instruction fields in the IF/ID pipeline register. Returning to our favorite
analogy, it’s as if you restart the washer with the same clothes and let the dryer
continue tumbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
instructions that have no effect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In Figure
4.49, we see that deasserting all nine control signals (setting them to 0) in the EX,
MEM, and WB stages will create a “do nothing” or nop instruction. By identifying
the hazard in the ID stage, we can insert a bubble into the pipeline by changing the
EX, MEM, and WB control fields of the ID/EX pipeline register to 0. These benign
control values are percolated forward at each clock cycle with the proper effect: no
registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution
slot associated with the AND instruction is turned into a nop and all instructions
beginning with the AND instruction are delayed one cycle. Like an air bubble in
a water pipe, a stall bubble delays everything behind it and proceeds down the
instruction pipe one stage each cycle until it exits at the end. In this example, the
hazard forces the AND and OR instructions to repeat in clock cycle 4 what they
did in clock cycle 3: AND reads registers and decodes, and OR is refetched from
instruction memory. Such repeated work is what a stall looks like, but its effect is
to stretch the time of the AND and OR instructions and delay the fetch of the add
instruction.

Figure 4.60 highlights the pipeline connections for both the hazard detection
unit and the forwarding unit. As before, the forwarding unit controls the ALU
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Program
execution
order

(in instructions) _

w $2, 20($1) lFEeE:

bubble

|
and becomes nop HiRe

L

and $4, $2, $5 @—

or $8, $2, $6

add $9, $4, 52 [ ered [ ||' Reg

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed
until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no

further hazards occur.

multiplexors to replace the value from a general-purpose register with the value
from the proper pipeline register. The hazard detection unit controls the writing
of the PC and IF/ID registers plus the multiplexor that chooses between the real
control values and all 0s. The hazard detection unit stalls and deasserts the control
fields if the load-use hazard test above is true. [ Section 4.13 gives an example of
MIPS code with hazards that causes stalling, illustrated using single-clock pipeline
diagrams, if you would like to see more details.

Although the compiler generally relies upon the hardware to resolve hazards
and thereby ensure correct execution, the compiler must understand the
pipeline to achieve the best performance. Otherwise, unexpected stalls
will reduce the performance of the compiled code.

the BIG

Picture
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FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.

Elaboration: Regarding the remark earlier about setting control lines to O to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be O, while

the other control signals can be don't cares.

There are a thousand
hacking at the
branches of evil to one
who is striking at the

Control Hazards

root. Thus far, we have limited our concern to hazards involving arithmetic operations
Henry David Thoreau, and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards
Walden, 1854 involving branches. Figure 4.61 shows a sequence of instructions and indicates when

the branch would occur in this pipeline. An instruction must be fetched at every
clock cycle to sustain the pipeline, yet in our design the decision about whether to
branch doesn’t occur until the MEM pipeline stage. As mentioned in Section 4.5,
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Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5s CCo CC7 CC8 CCo

Program
execution
order

(in instructions)

40 beq $1, $3, 28

I

44 and $12, $2, $5
48 or $13, $6, $2
52 add $14, $2, $2

—

72 Iw $4, 50($7)

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, ...)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before beq branches to 1w at location 72. (Figure 4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

this delay in determining the proper instruction to fetch is called a control hazard
or branch hazard, in contrast to the data hazards we have just examined.

This section on control hazards is shorter than the previous sections on data
hazards. The reasons are that control hazards are relatively simple to understand,
they occur less frequently than data hazards, and there is nothing as effective
against control hazards as forwarding is against data hazards. Hence, we use
simpler schemes. We look at two schemes for resolving control hazards and one
optimization to improve these schemes.
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PREDICTION

flush To discard
instructions in a pipeline,
usually due to an
unexpected event.

Assume Branch Not Taken

As we saw in Section 4.5, stalling until the branch is complete is too slow. One
improvement over branch stalling is to predict that the branch will not be taken
and thus continue execution down the sequential instruction stream. If the branch
is taken, the instructions that are being fetched and decoded must be discarded.
Execution continues at the branch target. If branches are untaken half the time,
and if it costs little to discard the instructions, this optimization halves the cost of
control hazards.

To discard instructions, we merely change the original control values to 0s, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch.
Thus far, we have assumed the next PC for a branch is selected in the MEM
stage, but if we move the branch execution earlier in the pipeline, then fewer
instructions need be flushed. The MIPS architecture was designed to support fast
single-cycle branches that could be pipelined with a small branch penalty. The
designers observed that many branches rely only on simple tests (equality or sign,
for example) and that such tests do not require a full ALU operation but can be
done with at most a few gates. When a more complex branch decision is required,
a separate instruction that uses an ALU to perform a comparison is required—a
situation that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing
the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the ID stage; of course, the branch target address
calculation will be performed for all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would compare
the two registers read during the ID stage to see if they are equal. Equality can be
tested by first exclusive ORing their respective bits and then ORing all the results.
Moving the branch test to the ID stage implies additional forwarding and hazard
detection hardware, since a branch dependent on a result still in the pipeline must
still work properly with this optimization. For example, to implement branch on
equal (and its inverse), we will need to forward results to the equality test logic that
operates during ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if
the instruction is a branch, we can set the PC to the branch target address.
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Forwarding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in ID will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may be
produced later in time, it is possible that a data hazard can occur and a stall
will be needed. For example, if an ALU instruction immediately preceding
a branch produces one of the operands for the comparison in the branch,
a stall will be required, since the EX stage for the ALU instruction will
occur after the ID cycle of the branch. By extension, if a load is immediately
followed by a conditional branch that is on the load result, two stall cycles
will be needed, as the result from the load appears at the end of the MEM
cycle but is needed at the beginning of ID for the branch.

Despite these difficulties, moving the branch execution to the ID stage is an
improvement, because it reduces the penalty of a branch to only one instruction if
the branch is taken, namely, the one currently being fetched. The exercises explore
the details of implementing the forwarding path and detecting the hazard.

To flush instructions in the IF stage, we add a control line, called IEFlush,
that zeros the instruction field of the IF/ID pipeline register. Clearing the register
transforms the fetched instruction into a Nop, an instruction that has no action
and changes no state.

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches that are not taken and that we
moved the branch execution to the ID stage:

36 sub $10, $4, $8
40 beq $1, $3, 7 # PC-relative branch to 40+4+7%4=72
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 s1t $15, $6, $7

72 1w $4, 50(%7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61,
there is only one pipeline bubble on a taken branch.
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FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being
fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s
arguable whether or not the ID stage in clock 4 should be highlighted.)
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For
the simple five-stage pipeline, such an approach, possibly coupled with compiler-
based prediction, is probably adequate. With deeper pipelines, the branch penalty
increases when measured in clock cycles. Similarly, with multiple issue (see Section
4.10), the branch penalty increases in terms of instructions lost. This combination
means that in an aggressive pipeline, a simple static prediction scheme will probably
waste too much performance. As we mentioned in Section 4.5, with more hardware
it is possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don’t know, in fact, if the prediction is
the right one—it may have been put there by another branch that has the same
low-order address bits. However, this doesn’t affect correctness. Prediction is just
a hint that we hope is correct, so fetching begins in the predicted direction. If the
hint turns out to be wrong, the incorrectly predicted instructions are deleted, the
prediction bit is inverted and stored back, and the proper sequence is fetched and
executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than once,
when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken
once. What is the prediction accuracy for this branch, assuming the prediction
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and last loop
iterations. Mispredicting the last iteration is inevitable since the prediction
bit will indicate taken, as the branch has been taken nine times in a row at
that point. The misprediction on the first iteration happens because the bit is
flipped on prior execution of the last iteration of the loop, since the branch
was not taken on that exiting iteration. Thus, the prediction accuracy for this

PREDICTION

dynamic branch
prediction Prediction of
branches at runtime using
runtime information.

branch prediction
buffer Also called
branch history table.
A small memory that

is indexed by the lower
portion of the address of
the branch instruction
and that contains one
or more bits indicating
whether the branch was
recently taken or not.
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branch delay slot The
slot directly after

a delayed branch
instruction, which in the
MIPS architecture is filled
by an instruction that
does not affect the branch.

branch that is taken 90% of the time is only 80% (two incorrect predictions and
eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch frequency for
these highly regular branches. To remedy this weakness, 2-bit prediction schemes
are often used. In a 2-bit scheme, a prediction must be wrong twice before it is
changed. Figure 4.63 shows the finite-state machine for a 2-bit prediction scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed
with the instruction address during the IF pipe stage. If the instruction is predicted
as taken, fetching begins from the target as soon as the PC is known; as mentioned
on page 318, it can be as early as the ID stage. Otherwise, sequential fetching and
executing continue. If the prediction turns out to be wrong, the prediction bits are
changed as shown in Figure 4.63.

Elaboration: As we described in Section 4.5, in a five-stage pipeline we can make the
control hazard a feature by redefining the branch. A delayed branch always executes the
following instruction, but the second instruction following the branch will be affected by
the branch.

Compilers and assemblers try to place an instruction that always executes after the
branch in the branch delay slot. The job of the software is to make the successor
instructions valid and useful. Figure 4.64 shows the three ways in which the branch
delay slot can be scheduled.

Not taken
Predict taken ) Predict taken
Taken
Not taken ‘ Taken
Not taken
Predict not taken
Taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of
its range as the division between taken and not taken.
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The limitations on delayed branch scheduling arise from (1) the restrictions on the
instructions that are scheduled into the delay slots and (2) our ability to predict at
compile time whether a branch is likely to be taken or not.

Delayed branching was a simple and effective solution for a five-stage pipeline
issuing one instruction each clock cycle. As processors go to both longer pipelines
and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay
becomes longer, and a single delay slot is insufficient. Hence, delayed branching has
lost popularity compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available transistors per chip has due to Moore’s Law
made dynamic prediction relatively cheaper.

a. From before b. From target c. From fall-through

add $s1, $s2, $s3

if $s2 = 0 then

Delay slot

sub $t4, $t5, $t6

add $s1, $s2, $s3

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

if $s1 = 0 then
Delay slot sub $t4, $t5, $t6
Becomes Becomes Becomes
add $s1, $s2, $s3
if $s2 = 0 then if $s1 = 0 then

add $s1, $s2, $s3

add $s1, $s2, $s3 sub $t4, $t5, $t6

if $s1 = 0 then
sub $t4, $t5, $t6

FIGURE 4.64 Scheduling the branch delay slot. The top box in each pair shows the code before
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent
instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not
possible. In the code sequences for (b) and (c), the use of $51 in the branch condition prevents the add
instruction (whose destination is $51) from being moved into the branch delay slot. In (b) the branch delay
slot is scheduled from the target of the branch; usually the target instruction will need to be copied because
it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability,
such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To
make this optimization legal for (b) or (c), it must be OK to execute the SuUb instruction when the branch
goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still execute
correctly. This is the case, for example, if $t4 were an unused temporary register when the branch goes in
the unexpected direction.

MOORE’'S LAW
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branch target buffer

A structure that caches
the destination PC or
destination instruction
for a branch. It is usually
organized as a cache with
tags, making it more
costly than a simple
prediction buffer.

correlating predictor
A branch predictor that
combines local behavior
of a particular branch
and global information
about the behavior of
some recent number of
executed branches.

tournament branch
predictor A branch
predictor with multiple
predictions for each
branch and a selection
mechanism that chooses
which predictor to enable
for a given branch.

Check
Yourself

Elaboration: A branch predictor tells us whether or not a branch is taken, but still
requires the calculation of the branch target. In the five-stage pipeline, this calculation
takes one cycle, meaning that taken branches will have a 1-cycle penalty. Delayed
branches are one approach to eliminate that penalty. Another approach is to use a
cache to hold the destination program counter or destination instruction using a branch
target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular branch.
Researchers noticed that using information about both a local branch, and the global
behavior of recently executed branches together yields greater prediction accuracy for
the same number of prediction bits. Such predictors are called correlating predictors.
A typical correlating predictor might have two 2-bit predictors for each branch, with the
choice between predictors made based on whether the last executed branch was taken
or not taken. Thus, the global branch behavior can be thought of as adding additional
index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors. A
tournament predictor uses multiple predictors, tracking, for each branch, which predictor
yields the best results. A typical tournament predictor might contain two predictions for
each branch index: one based on local information and one based on global branch
behavior. A selector would choose which predictor to use for any given prediction. The
selector can operate similarly to a 1- or 2-bit predictor, favoring whichever of the two
predictors has been more accurate. Some recent microprocessors use such elaborate
predictors.

Elaboration: One way to reduce the number of conditional branches is to add
conditional move instructions. Instead of changing the PC with a conditional branch, the
instruction conditionally changes the destination register of the move. If the condition
fails, the move acts as a nop. For example, one version of the MIPS instruction set
architecture has two new instructions called movn (move if not zero) and movz (move
if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8,
provided that the value in register 4 is nonzero; otherwise, it does nothing.

The ARMvV7 instruction set has a condition field in most instructions. Hence, ARM
programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary

We started in the laundry room, showing principles of pipelining in an everyday
setting. Using that analogy as a guide, we explained instruction pipelining
step-by-step, starting with the single-cycle datapath and then adding pipeline
registers, forwarding paths, data hazard detection, branch prediction, and flushing
instructions on exceptions. Figure 4.65 shows the final evolved datapath and control.
We now are ready for yet another control hazard: the sticky issue of exceptions.

Consider three branch prediction schemes: predict not taken, predict taken, and
dynamic prediction. Assume that they all have zero penalty when they predict
correctly and two cycles when they are wrong. Assume that the average predict
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FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so
it’s missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

accuracy of the dynamic predictor is 90%. Which predictor is the best choice for

the following branches?

1. A branch that is taken with 5% frequency

2. Abranch that is taken with 95% frequency

3. Abranch that is taken with 70% frequency

Exceptions

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of

To make a computer
with automatic
program-interruption
facilities behave
[sequentially] was

not an easy mattet,
because the number of
instructions in various
stages of processing
when an interrupt
signal occurs may be
large.

Fred Brooks, Jr.,
Planning a Computer

System: Project Stretch,
1962



